高三数学总复习的针对性与实效性

2019-12-09 11:36:23

  高中数学总复习,面广量大,不少考生感到既畏惧,又无从下手,那么如何在不到一年的时间内有针对性的、全面的、系统的、完整的复习好考试内容,发挥好考生应有的水平,这是我们每一位老师和高三学生必须深层次思考的问题,同时也是我们能否做好高三总复习的前提。为此,为了避免高三数学总复习的盲目性,真正做到复习的计划性、针对性、实效性,笔者结合近几年自身高三数学教学的体会,谈一点粗浅的认识,仅供大家参考,不妥之处,望大家给予批评指正。

  一、复习的指导原则和指导思想

  笔者认为:高考数学总复习的指导原则和指导思想是以“纲”为“纲”,明晰考试要求;以“标”为“标”,把握通性通法;以练促学,学会“举一反三”;以错纠错,提高解题技能。“纲”就是《考试大纲》和《考试说明》,“标”就是“高中数学新课程标准”。

  从近几年的高考试题来看,要求我们在复习的过程中,必须对照“一纲一标一说明”(“一纲”即教学大纲,“一标”即新课程标准,“一说明”即考试说明),狠抓“双基”,(“双基”即基础知识和基本技能),强化知识主干,形成知识网络,构建知识树图,整理知识体系,总结解题规律,提高应试技能,淡化特殊技巧,掌握通性通法,才能提高复习的针对性和实效性。

  二、加强复习策略的研究,提高复习的针对性和实效性

  1、细悟“一纲一标一说明”,狠抓“双基”,强化知识主干,彰显高中数学章节结构,构建高中数学知识树图。

  对照近几年的考试大纲、考试说明及高中数学新课程标准,以课本章节为单位,以高三教辅资料和高中数学课本为载体,以近几年高考数学试题为研究对象,逐章逐节全面系统的复习高中数学的全部内容,细悟“一纲一标一说明”,真正做到考点明确,内容全面,知识点不遗漏,在同学们大脑中真正建立起课本章节知识树图,形成高中数学章节目录结构,构筑知识网络,整理学生认知结构。

  2、加强数学概念的复习,展示数学公式、定理的推导过程,注重知识的交汇与整合,锻炼学生的解题策略与答题技巧。

  数学是概念的游戏,概念是实施数学教学和创造的源泉,没有概念,教学就无法入手,无法深入研究,解题也就失去依据,同时,创造也就无从谈起,因此,在高中数学总复习中,必须牢牢把握高中数学概念的复习,使每个考生对高中数学考点中的概念做到心中有数,有的放矢,同时根据高中数学概念推导出相应的公式、定理。比如等差数列,首先应明确等差数列的概念,然后再根据等差数列的概念推导出等差数列的通项公式,通过等差数列通项公式的研究再找出等差数列的性质,在根据等差数列的和的定义,再推导出等差数列的前n项和公式与前n项和公式的相关性质。

  实际上,高中数学公式很多都是根据概念推导出来的,这样不仅熟悉了数学概念,同时也让学生掌握了公式的来龙去脉,展示了公式的推导过程,培养了学生的逻辑推理能力和数学公式的发现过程,极大的培养了学生的创造能力,再说,公式、定理的推导过程本来就是一个再创造,再发现的

  等差数列的概念:在一列数中,从第二项开始,它的后一项与前一项的差是一个常数的数列叫等差数列过程。当然,还要注重知识间的联系与整合,加强数学知识网络交汇点处试题命制的研究,培养学生的解题策略和答题技巧。

  3、展示问题、结论的探索过程及思想、方法的深化过程,给学生提供知识再创造,再发现的环境和平台。

  学数学离不开解题,但解题不等于学数学,解题是在掌握所学知识和方法的基础上进行简单的应用,解题可以训练人的思维和技巧,磨练人的意志。在解题的过程中,首先应判断解题的大方向、大致的思路、设计到的概念、已知条件、隐含条件,所要求解的结果等,然后在大脑中呈现与之相关的知识点、解决此类问题的方法、策略、手段,最后根据得到的信息实施解题,当然,在解题的全过程还要监控自己的行为:是否走了弯路?是否走入死胡同?有没有出错?有没有其他更好的办法?能否将题目进行改造、拓展?能否推出更带普遍意义的结论?跟其他学科知识有没有联系?这样以来,不仅拓展了学生的发散思维,培养了学生的创新精神和探索能力,而且还培养了学生对待问题严谨、负责、全面的科学精神。此外,在复习的过程中还要积极引导学生思考,让学生学会联想、学会从不同的角度、不同的立意去分析问题、解决问题。

  4、注意各学科、各章节、各部分知识之间的沟通与联系,通过类比、联想、知识迁移和应用,使学生体会知识之间的有机联系,感受数学的整体性,进一步理解数学的本质,提高分析问题、解决问题的能力。

  5、深究高考试卷,预测考试方向,把握高考脉络,提高高考复习的针对性、实效性。

  纵观近几年的高考数学试题,我们不难发现,高考试题始终坚持新题不难,难题不怪的命题方向,把握“重点知识重点考察”,强调“注意通性通法,淡化特殊技巧”。这样以来,我们只要细细研究高考试卷,就会发现,实际上高考试题的命制是有章可循的,比如直线与圆锥曲线的位置关系年年必考,立体几何中的二面角的求法年年必考,三角函数、数列年年必考,这些知识我们就必须重点复习,重点研究。

  三、注重数学思想、数学方法和数学理性思维能力的复习

  《考试说明》中明确指出:“数学科的命题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重数学能力的考查”,“对能力的考查,以思维能力为核心,全面考查各种能力,强调综合性、应用性,并切合考生实际,对思维能力的考查贯穿全卷,重点体现理性思维的考查,强调思维的科学性、严谨性、抽象性。”为此,我们在总复习中既要重视数学思想、数学方法的复习,还要重视数学理性思维能力的复习。

  中学数学知识中所蕴涵的数学思想和方法主要有:数形结合思想、函数和方程思想、分类讨论思想、化归与转化思想。“数学思想方法和数学基本方法常常在学习、掌握数学知识的同时获得,与此同时又应该领会它们在形成知识中的作用,到了复习阶段就应该对数学思想和数学基本方法进行疏理、总结、逐个认识它们的本质特征、思维程序或者操作程序,逐步做到自觉地、灵活地施用于所要解决的问题”。实际上近几年的每一道高考试题几乎都考虑到数学思想或数学基本方法的运用,目的也是加强这些方面的考查。因此,在平时的复习中,就要有意识、有目的的加强数学思想和数学基本方法的总结、应用和反思。

  中学数学知识中所蕴涵的理性思维能力包括:逻辑推理、演绎证明、归纳抽象、直觉猜想、运算求解等方面的内容。在复习时,我们要有意识地从多角度、多纬度、多视野地提高数学思维能力,既不要只是局限于逻辑思维能力的练习,还要训练归纳抽象、直觉猜想、运算求解等,使自己的思维能力能够较全面地、系统地得到提高。

  总之,只有全面、系统地复习数学思想和数学基本方法,有目的、有意识地强化理性思维地训练,才能更有效地复习,也才能使自己的思维水平和思维质量得到提升。

  来源:高考数学工作间的博客