2017年高考全国Ⅲ卷理数试题(Word版含答案)
2023-11-27 11:23:05
绝密★启用前
2017年普通高等学校招生全国统一考试(新课标Ⅲ)
理科数学
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A=,B=,则AB中元素的个数为
A.3 B.2 C.1 D.0
2.设复数z满足(1+i)z=2i,则OzO=
A. B. C. D.2
3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月份
D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳
4.(+)(2-)5的展开式中33的系数为
A.-80 B.-40 C.40 D.80
5.已知双曲线C: (a>0,b>0)的一条渐近线方程为,且与椭圆有公共焦点,则C的方程为
A. B. C. D.
6.设函数f(x)=cos(x+),则下列结论错误的是
A.f(x)的一个周期为?2π B.y=f(x)的图像关于直线x=对称
C.f(x+π)的一个零点为x= D.f(x)在(,π)单调递减
7.执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为
A.5 B.4 C.3 D.2
8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为
A. B. C. D.
9.等差数列的首项为1,公差不为0.若a2,a3,a6成等比数列,则前6项的和为
A.-24 B.-3 C.3 D.8
10.已知椭圆C:,(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为
A. B. C. D.
11.已知函数有唯一零点,则a=
A. B. C. D.1
12.在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若= +,则+的最大值为
A.3 B.2 中/华-资*源%库 C. D.2
二、填空题:本题共4小题,每小题5分,共20分。
13.若,满足约束条件,则的最小值为__________.
14.设等比数列满足a1 + a2 = -1, a1 - a3 = -3,则a4 = ___________.
15.设函数则满足的x的取值范围是_________。
16.a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:
①当直线AB与a成60°角时,AB与b成30°角;
②当直线AB与a成60°角时,AB与b成60°角;
③直线AB与a所称角的最小值为45°;
④直线AB与a所称角的最小值为60°;
其中正确的是________。(填写所有正确结论的编号)
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)
△ABC的内角A,B,C的对边分别为a,b,c,已知sA+cosA=0,a=2,b=2.
(1)求c;
(2)设D为BC边上一点,且AD AC,求△ABD的面积.
18.(12分)
某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温
[10,15)
[15,20)
[20,25)
[25,30)
[30,35)
[35,40)
天数
2
16
36
25
7
4
以最高气温位于各区间的频率代替最高气温位于该区间的概率。
(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?
19.(12分)
如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.所以二面角D-AE-C的余弦值为
20.解
(1)设
由可得
又=4
因此OA的斜率与OB的斜率之积为
所以OA⊥OB
故坐标原点O在圆M上.
(2)由(1)可得
故圆心M的坐标为,圆M的半径
由于圆M过点P(4,-2),因此,故
即
由(1)可得,
所以,解得.
当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为
当时,直线l的方程为,圆心M的坐标为,圆M的半径为,圆M的方程为
21.解:(1)的定义域为.
①若,因为,所以不满足题意;
②若,由知,当时,;当时,,所以在单调递减,在单调递增,故x=a是在的唯一最小值点.
由于,所以当且仅当a=1时,.
故a=1
(2)由(1)知当时,
令得,从而
故
而,所以m的最小值为3.
22.解:
(1)消去参数t得l1的普通方程;消去参数m得l2的普通方程
设P(x,y),由题设得,消去k得.
所以C的普通方程为
(2)C的极坐标方程为
联立得.
故,从而
代入得,所以交点M的极径为.
23.解:
(1)
当时,无解;
当时,由得,,解得
当时,由解得.
所以的解集为.
(2)由得,而
且当中/华-资*源%库时,.
故m的取值范围为