当前位置: 高考统招 高考真题 2014年高考真题——理科数学(湖北卷)解析版2 Word版含解析

2014年高考真题——理科数学(湖北卷)解析版2 Word版含解析

2023-12-05 19:44:28


绝密★启用前 

2014年普通高等学校招生全国统一考试(湖北卷)
数  学(理工类)
本试题卷共5页,22题。全卷满分150分。考试用时120分钟。
★祝考试顺利★
注意事项:
  1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。用统一提供的2B铅笔将答题卡上试卷类型A后的方框涂黑。
  2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑。写在试题卷、草稿纸和答题卡上的非答题区域均无效。
  3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。
  4.考试结束后,请将本试题卷和答题卡一并上交。
  
  
一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
                                   
  1.[2014・湖北卷] i为虚数单位,=(  )
                    
  
  A.-1  B.1  C.-i  D.i
  1.A [解析] ==-1.故选A.
  2.[2014・湖北卷] 若二项式的展开式中的系数是84,则实数a=(  )
  A.2  B.  C.1  D.
  2.C [解析] 展开式中含的项是T6=C(2x)2=C22a5x-3,故含的项的系数是C22a5=84,解得a=1.故选C.
  3. [2014・湖北卷] U为全集,A,B是集合,则"存在集合C使得A?C,B??UC"是"A∩B=?"的(  )
  A.充分而不必要条件  
  B.必要而不充分条件
  C.充要条件  
  D.既不充分也不必要条件
  3.C [解析] 若存在集合C使得A?C,B??UC,则可以推出A∩B=?;若A∩B=?,由维思图可知,一定存在C=A,满足A?C,B??UC,故"存在集合C使得A?C,B??UC"是"A∩B=?"的充要条件.故选C.
  4.[2014・湖北卷] 根据如下样本数据:
x 3 4 5 6 7 8 y 4.0 2.5 -0.5 0.5 -2.0 -3.0   得到的回归方程为\s\up6(^(^)=bx+a,则(  )
  A.a>0,b>0  B.a>0,b<0  
  C.a<0,b>0  D.a<0,b<0
  4.B [解析] 作出散点图如下:
  
  观察图象可知,回归直线\s\up6(^(^)=bx+a的斜率b<0,截距a>0.故a>0,b<0.故选B.
  5.[2014・湖北卷] 在如图1-1所示的空间直角坐标系O - xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为(  )
  
  图1-1
    
  A.①和②  B.①和③  C.③和②  D.④和②
  5.D [解析] 由三视图及空间直角坐标系可知,该几何体的正视图显然是一个直角三角形且内有一条虚线(一锐角顶点与其所对直角边中点的连线),故正视图是④;俯视图是一个钝角三角形,故俯视图是②. 故选D.
  6.[2014・湖北卷] 若函数f(x),g(x)满足f(x)g(x)dx=0,则称f(x),g(x)为区间[-1,1]上的一组正交函数,给出三组函数:
  ①f(x)=sx,g(x)=cosx;②f(x)=x+1,g(x)=x-1;③f(x)=x,g(x)=x2.
  其中为区间[-1,1]上的正交函数的组数是(  )
  A.0  B.1  C.2  D.3
  6.C [解析] 由题意,要满足f(x),g(x)是区间[-1,1]上的正交函数,即需满足f(x)g(x)dx=0.
  ①f(x)g(x)dx=sxcosxdx=
  sxdx==0,故第①组是区间[-1,1]上的正交函数;
  ②f(x)g(x)dx=(x+1)(x-1)dx==-≠0,故第②组不是区间[-1,1]上的正交函数;
  ③f(x)g(x)dx=x・x2dx==0,故第③组是区间[-1,1]上的正交函数.
  综上,是区间[-1,1]上的正交函数的组数是2. 故选C.
  7.[2014・湖北卷] 由不等式组确定的平面区域记为Ω1,不等式组确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为(  )
  A.  B.  C.  D.
  7.D [解析] 作出Ω1,Ω2表示的平面区域如图所示,
  
  SΩ1=S△AOB=×2×2=2,S△BCE=×1×=,则S四边形AOEC=SΩ1-S△BCE=2-=.故由几何概型得,所求的概率P===.故选D.
  8.[2014・湖北卷] 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求"锔"的术:"置如其周,令相乘也.又以高乘之,三十六成一."该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为(  )
  A.  B.  C.  D.
  8.B [解析] 设圆锥的底面圆半径为r,底面积为S,则L=2πr,由题意得L2h≈Sh,代入S=πr2化简得π≈3;类比推理,若V=L2h,则π≈.故选B.
  9.、[2014・湖北卷] 已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=,则椭圆和双曲线的离心率的倒数之和的最大值为(  )
  A.  B.  C.3  D.2
  9.A [解析] 设|P=r1,|P=r2,r1>r2,椭圆的长半轴长为a1,双曲线的实半轴长为a2,椭圆、双曲线的离心率分别为e1,e2.则由椭圆、双曲线的定义,得r1+r2=2a1,r1-r2=2a2,平方得4a=r+r+2r1r2,4a=r-2r1r2+r.又由余弦定理得4c2=r+r-r1r2,消去r1r2,得a+3a=4c2,
  即+=4.所以由柯西不等式得=≤=.
  所以+≤.故选A.
  10.[2014・湖北卷] 已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=(|x-+|x--3a2).若?x∈R,f(x-1)≤f(x),则实数a的取值范围为(  )
  A.  B.  
  C.  D.
  10.B [解析] 因为当x≥0时,f(x)=,所以当0≤x≤a2时,f(x)==-x;
  当a2  f(x)==-a2;
  当x≥2a2时,
  f(x)==x-3a2.
  综上,f(x)= 
  因此,根据奇函数的图象关于原点对称作出函数f(x)在R上的大致图象如下,
  
  观察图象可知,要使?x∈R,f(x-1)≤f(x),则需满足2a2-(-4a2)≤1,解得-≤a≤.故选B.
  11.[2014・湖北卷] 设向量a=(3,3),b=(1,-1).若(a+λb)⊥(a-λb),则实数λ=________.
  11.±3 [解析] 因为a+λb=(3+λ,3-λ),a-λb=(3-λ,3+λ),又(a+λb)⊥(a-λb),所以(a+λb)・(a-λb)=(3+λ)(3-λ)+(3-λ)(3+λ)=0,解得λ=±3.
  12.[2014・湖北卷] 直线l1:y=x+a和l2:y=x+b将单位圆C:x2+y2=1分成长度相等的四段弧,则a2+b2=________.
  12.2 [解析] 依题意得,圆心O到两直线l1:y=x+a,l2:y=x+b的距离相等,且每段弧长等于圆周的,即==1×s 45°,得 ==1.故a2+b2=2.
  
  
  图1-2
  13.[2014・湖北卷] 设a是一个各位数字都不是0且没有重复数字的三位数.将组成a的3个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=815,则I(a)=158,D(a)=851).阅读如图1-2所示的程序框图,运行相应的程序,任意输入一个a,输出的结果b=________.
  13.495 [解析] 取a1=815?b1=851-158=693≠815?a2=693;
  由a2=693?b2=963-369=594≠693?a3=594;
  由a3=594?b3=954-459=495≠594?a4=495;
  由a4=495?b4=954-459=495=a4?b=495.
  
  14.、[2014・湖北卷] 设f(x)是定义在(0,+∞)上的函数,且f(x)>0,对任意a>0,b>0,若经过点(a,f(a)),(b,-f(b))的直线与x轴的交点为(c,0),则称c为a,b关于函数f(x)的平均数,记为Mf(a,b),例如,当f(x)=1(x>0)时,可得Mf(a,b)=c=,即Mf(a,b)为a,b的算术平均数.
  (1)当f(x)=________(x>0)时,Mf(a,b)为a,b的几何平均数;
  (2)当f(x)=________(x>0)时,Mf(a,b)为a,b的调和平均数.
  (以上两空各只需写出一个符合要求的函数即可)
  
  14.(1) (2)x(或填(1)k1;(2)k2x,其中k1,k2为正常数)
  [解析] 设A(a,f(a)),B(b,-f(b)),C(c,0),则此三点共线:
  (1)依题意,c=,则=,
  即=.
  因为a>0,b>0,所以化简得=,故可以选择f(x)=(x>0);
  (2)依题意,c=,则=,因为a>0,b>0,所以化简得=,故可以选择f(x)=x(x>0).
  15.[2014・湖北卷] (选修4-1:几何证明选讲)
  如图1-3,P为⊙O外一点,过P点作⊙O的两条切线,切点分别为A,B,过PA的中点Q作割线交⊙O于C,D两点,若QC=1,CD=3,则PB=________.
  
  图1-3
  15.4 [解析] 由切线长定理得QA2=QC・QD=1×(1+3)=4,解得QA=2.故PB=PA=2QA=4.
  16.[2014・湖北卷] (选修4-4:坐标系与参数方程)
  已知曲线C1的参数方程是(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,则C1与C2交点的直角坐标为________.
  16. [解析] 由消去t得y=x(x≥0),即曲线C1的普通方程是y=x(x≥0);由ρ=2,得ρ2=4,得x2+y2=4,即曲线C2的直角坐标方程是x2+y2=4.联立解得
  故曲线C1与C2的交点坐标为.
  17.、、、[2014・湖北卷] 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:
  f(t)=10-cost-st,t∈[0,24).
  (1)求实验室这一天的最大温差.
  (2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?
  
  17.解:(1)因为f(t)=10-2=10-2s,
  又0≤t<24,所以≤t+<,-1≤s≤1.
  当t=2时,s=1;
  当t=14时,s=-1.
  于是f(t)在[0,24)上取得的最大值是12,最小值是8.
  故实验室这一天的最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.
  (2)依题意,当f(t)>11时,实验室需要降温.
  由(1)得f(t)=10-2s,
  故有10-2s>11,
  即s<-.
  又0≤t<24,因此  即10  故在10时至18时实验室需要降温.
  18.、、[2014・湖北卷] 已知等差数列{}满足:a1=2,且a1,a2,a5成等比数列.
  (1)求数列{}的通项公式.
  (2)记Sn为数列{}的前n项和,是否存在正整数n,使得Sn>+800?若存在,求n的最小值;若不存在,说明理由.
  
  18.解:(1)设数列{}的公差为d,
  依题意得,2,2+d,2+4d成等比数列,
  故有(2+d)2=2(2+4d),
  化简得d2-4d=0,解得d=0或d=4.
  当d=0时,=2;
  当d=4时,=2+(n-1)・4=-2.
  从而得数列{}的通项公式为=2或=-2.
  (2)当=2时,Sn=,显然<+800,
  此时不存在正整数n,使得Sn>+800成立.
  当=-2时,Sn==2.
  令2>+800,即n2--400>0,
  解得n>40或n<-10(舍去),
  此时存在正整数n,使得Sn>+800成立,n的最小值为41.
  综上,当=2时,不存在满足题意的正整数n;
  当=-2时,存在满足题意的正整数n,其最小值为41.
  19.、、、[2014・湖北卷] 如图1-4,在棱长为2的正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).
  (1)当λ=1时,证明:直线BC1∥平面EFPQ.
  (2)是否存在λ,使面EFPQ与面PQ所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.
  
  图1-4
  19.解:方法一(几何方法):
  (1)证明:如图①,连接AD1,由ABCD-A1B1C1D1是正方体,知BC1∥AD1.
  当λ=1时,P是DD1的中点,又F是AD的中点,所以FP∥AD1,所以BC1∥FP.
  而FP?平面EFPQ,且BC1?平面EFPQ,故直线BC1∥平面EFPQ.
  
  图①         图②   
  (2)如图②,连接BD.因为E,F分别是AB,AD的中点,所以EF∥BD,且EF=BD.
  又DP=BQ,DP∥BQ,
  所以四边形PQBD是平行四边形,故PQ∥BD,且PQ=BD,从而EF∥PQ,且EF=PQ.
  在Rt△EBQ和Rt△FDP中,因为BQ=DP=λ,BE=DF=1,
  于是EQ=FP=,所以四边形EFPQ也是等腰梯形.
  同理可证四边形PQ也是等腰梯形.
  分别取EF,PQ,的中点为H,O,G,连接OH,OG,
  则GO⊥PQ,HO⊥PQ,而GO∩HO=O,
  故∠GOH是面EFPQ与面PQ所成的二面角的平面角.
  若存在λ,使面EFPQ与面PQ所成的二面角为直二面角,则∠GOH=90°.
  连接,,则由EF∥,且EF=知四边形M是平行四边形.
  连接GH,因为H,G是EF,的中点,
  所以GH=ME=2.
  在△GOH中,GH2=4,OH2=1+λ2-=λ2+,
  OG2=1+(2-λ)2-=(2-λ)2+,
  由OG2+OH2=GH2,得(2-λ)2++λ2+=4,解得λ=1±,
  故存在λ=1±,使面EFPQ与面PQ所成的二面角为直二面角.
  方法二(向量方法):
  以D为原点,射线DA,DC,DD1分别为x,y,z轴的正半轴建立如图③所示的空间直角坐标系.由已知得B(2,2,0),C1(0,2,2),E(2,1,0),F(1,0,0),P(0,0,λ).
  
  
  图③    
  \s\up6(→(→)=(-2,0,2),FP=(-1,0,λ),FE=(1,1,0).
  (1)证明:当λ=1时,FP=(-1,0,1),
  因为\s\up6(→(→)=(-2,0,2),
  所以\s\up6(→(→)=2\s\up6(→(→),即BC1∥FP.
  而FP?平面EFPQ,且BC1?平面EFPQ,故直线BC1∥平面EFPQ.
  (2)设平面EFPQ的一个法向量为n=(x,y,z),则由\s\up6(→(\o(FE,\s\up6(→)可得
  于是可取n=(λ,-λ,1).
  同理可得平面PQ的一个法向量为m=(λ-2,2-λ,1).
  若存在λ,使面EFPQ与面PQ所成的二面角为直二面角,
  则m・n=(λ-2,2-λ,1)・(λ,-λ,1)=0,
  即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±.
  故存在λ=1±,使面EFPQ与面PQ所成的二面角为直二面角.
  20.[2014・湖北卷] 计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.
  (1)求未来4年中,至多有1年的年入流量超过120的概率.
  (2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:
年入流量X 40120 发电机最多
可运行台数 1 2 3   若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
  20.解:(1)依题意,p1=P(40  p2=P(80≤X≤120)==0.7,
  p3=P(X>120)==0.1.
  由二项分布得,在未来4年中至多有1年的年入流量超过120的概率为
  p=C(1-p3)4+C(1-p3)3p3=0.94+4×0.93×0.1=0.947 7.
  (2)记水电站年总利润为Y(单位:万元).
  ①安装1台发电机的情形.
  由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y=5000,E(Y)=5000×1=5000.
  ②安装2台发电机的情形.
  依题意,当40Y 4200 10 000 P 0.2 0.8   所以,E(Y)=4200×0.2+10 000×0.8=8840.
  ③安装3台发电机的情形.
  依题意,当40120时,三台发电机运行,此时Y=5000×3=15 000,因此P(Y=15 000)=P(X>120)=p3=0.1.由此得Y的分布列如下:
  
Y 3400 9200 15 000 P 0.2 0.7 0.1   所以,E(Y)=3400×0.2+9200×0.7+15 000×0.1=8620.
  综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.
  21.[2014・湖北卷] 在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1.记点M的轨迹为C.
  (1)求轨迹C的方程;
  (2)设斜率为k的直线l过定点P(-2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.
  21.解:(1)设点M(x,y),依题意得=|x|+1,即=|x|+1,
  化简整理得y2=2(|x|+x).
  故点M的轨迹C的方程为y2=
  (2)在点M的轨迹C中,记C1:y2=4x,C2:y=0(x<0).
  依题意,可设直线l的方程为y-1=k(x+2).
  由方程组可得ky2-4y+4(2k+1)=0.①
  当k=0时,y=1.把y=1代入轨迹C的方程,得x=.
  故此时直线l:y=1与轨迹C恰好有一个公共点.
  当k≠0时,方程①的判别式Δ=-16(2k2+k-1).②
  设直线l与x轴的交点为(x0,0),则由y-1=k(x+2),令y=0,得x0=-.③
  (i)若由②③解得k<-1或k>.
  即当k∈(-∞,-1)∪时,直线l与C1没有公共点,与C2有一个公共点.故此时直线l与轨迹C恰好有一个公共点.
  (ii)若或
  由②③解得k∈或-≤k<0.
  即当k∈时,直线l与C1只有一个公共点.
  当k∈时,直线l与C1有两个公共点,与C2没有公共点.
  故当k∈∪时,直线l与轨迹C恰好有两个公共点.
  (iii)若由②③解得-1  即当k∈∪时,直线l与C1有两个公共点,与C2有一个公共点,
  故此时直线l与轨迹C恰好有三个公共点.
  综上可知,当k∈∪∪{0}时,直线l与轨迹C恰好有一个公共点;当k∈∪时,直线l与轨迹C恰好有两个公共点;当k∈∪时,直线l与轨迹C恰好有三个公共点.
  
  22.[2014・湖北卷] π为圆周率,e=2.718 28...为自然对数的底数.
  (1)求函数f(x)=的单调区间;
  (2)求e3,3e,eπ,πe,,3π,π3这6个数中的最大数与最小数;
  (3)将e3,3e,eπ,πe,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.
  22.解:(1)函数f(x)的定义域为(0,+∞).因为f(x)=,所以f′(x)=.
  当f′(x)>0,即0  当f′(x)<0,即x>e时,函数f(x)单调递减.
  故函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).
  (2)因为e<3<π,所以 3< π,π e<π 3,即 3e< πe, eπ< 3π.
  于是根据函数y= x,y=ex,y=πx在定义域上单调递增,可得
  3e<πe<π3,e3  故这6个数的最大数在π3与3π之中,最小数在3e与e3之中.
  由e<3<π及(1)的结论,得f(π)  由<,得 π3<3π,所以3π>π3;
  由<,得 3e< e3,所以3e  综上,6个数中的最大数是3π,最小数是3e.
  (3)由(2)知,3e<πe<π3<3π,3e  又由(2)知,<,得πe  故只需比较e3与πe和eπ与π3的大小.
  由(1)知,当0  即<.
  在上式中,令x=,又2-.①
  由①得, π>e>2.7×>2.7×(2-0.88)=3.024>3,
  即 π>3,亦即 πe> e3,所以e3<πe.
  又由①得, π>6->6-e>π,即 π>π,
  所以eπ<π3.
  综上可得,3e  即这6个数从小到大的顺序为3e,e3,πe,eπ,π3,3π.